Given two bosonic operators $A$, $B$ (in the Heisenberg picture) in a QFT, the time-ordered product of $A$ and $B$ is defined as $$ T\{A(t_1)B(t_2)\}=\theta(t_1-t_2)A(t_1)B(t_2)+\theta(t_2-t_1)B(t_2)A(t_1),\tag{I} $$ where $\theta(t)$ is the Heaviside step function.
However, assuming that our theory has time translational symmetry, and assuming we have $$ A(t)=e^{aH\cdot (t-t_0)}A(t_0)e^{-aH\cdot(t-t_0)}\tag{II}\\ (a=i~\text{for the Lorentzian signature, $a=1$ for the Euclidean signature}), $$ one might write down the following expression by substituting (II) into the l.h.s. of (I) $$ \begin{align} T\{A(t_1)B(t_2)\}=&T\{e^{aH(t_0)\cdot(t_1-t_0)}A(t_0)e^{-aH(t_0)\cdot(t_1-t_0)}B(t_2)\}\nonumber\\ =&\theta(t_0-t_2)e^{aH(t_0)\cdot(t_1-t_0)}A(t_0)e^{-aH(t_0)\cdot(t_1-t_0)}B(t_2)\\ +&\theta(t_2-t_0)B(t_2)e^{aH(t_0)\cdot(t_1-t_0)}A(t_0)e^{-aH(t_0)\cdot(t_1-t_0)}\tag{III}. \end{align} $$ Here, in the first line, I select a special time slice $t=t_0$ to compute the Hamiltonian, i.e., $$ H(t_0)=\int d^{d-1}\vec x \,\mathcal{H}(t_0,\vec x) $$ where $\mathcal{H}$ is the Hamiltonian density in the Heisenberg picture. It seems that (III) is incorrect, because we can use (II) again to rewrite (III) as $$ T\{A(t_1)B(t_2)\}=\theta(t_0-t_2)A(t_1)B(t_2)+\theta(t_2-t_0)B(t_2)A(t_1),\tag{IV} $$ which is obviously ridiculous. Where did I go wrong? What stops me from deriving eq. (III)