Skip to content

๐Ÿš€ Complete e-commerce sales data analysis project demonstrating business intelligence skills with Python, Pandas, Matplotlib, and Seaborn. Includes customer segmentation, revenue analysis, and actionable business insights.

Notifications You must be signed in to change notification settings

MJ-Sarabando/sales-data-analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

1 Commit
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿ“Š E-commerce Sales Data Analysis

A comprehensive data analysis project demonstrating business intelligence capabilities using Python, Pandas, Matplotlib, and Seaborn.

Python Pandas Matplotlib Seaborn

๐ŸŽฏ Project Overview

This project demonstrates comprehensive data analysis of e-commerce sales data, providing actionable business insights through statistical analysis and data visualization. The analysis covers sales performance across multiple dimensions including time trends, product categories, customer segments, and sales channels.

๐Ÿ“ˆ Key Visualizations

Product Category Performance

Category Performance Analysis of revenue, order volume, and average order value across product categories

Sales Trends Over Time

Time Trends Monthly revenue trends, seasonal patterns, and day-of-week analysis

Customer Segmentation Analysis

Customer Segments Revenue analysis by customer segments (Regular, Premium, VIP) and age distribution

Sales Channel Performance

Channel Analysis Multi-dimensional analysis of sales channels, regional performance, and correlation matrix

๐Ÿš€ Quick Start

Prerequisites

pip install pandas matplotlib seaborn numpy jupyter

Generate Sample Data

python src/data_generation/generate_sample_data.py

Run Complete Analysis

python complete_analysis.py

Interactive Analysis (Jupyter)

jupyter notebook
# Navigate to notebooks/sales_data_analysis.ipynb

๐Ÿ“Š Dataset Overview

Metric Value
Total Records 2,000 sales transactions
Date Range 2 years of historical data
Product Categories Electronics, Clothing, Home & Garden, Books, Sports, Beauty
Customer Segments Regular, Premium, VIP
Sales Channels Online, Store, Mobile App
Geographic Coverage 5 regions (North, South, East, West, Central)

Data Schema

๐Ÿ“‹ sales_data.csv
โ”œโ”€โ”€ order_id          # Unique order identifier
โ”œโ”€โ”€ order_date        # Transaction date
โ”œโ”€โ”€ category          # Product category
โ”œโ”€โ”€ unit_price        # Price per unit ($)
โ”œโ”€โ”€ quantity          # Items ordered
โ”œโ”€โ”€ total_amount      # Total order value ($)
โ”œโ”€โ”€ customer_segment  # Customer tier
โ”œโ”€โ”€ customer_age      # Customer age
โ”œโ”€โ”€ sales_channel     # Purchase channel
โ”œโ”€โ”€ region           # Geographic region
โ””โ”€โ”€ discount_applied  # Discount percentage

๐Ÿ” Business Questions Analyzed

1. ๐Ÿ“ฆ Product Performance

  • Question: Which product categories generate the most revenue?
  • Key Finding: Electronics dominates with 59.9% of total revenue
  • Insight: High-value, low-frequency purchases drive significant revenue

2. ๐Ÿ“… Temporal Trends

  • Question: How do sales vary over time?
  • Key Finding: Clear seasonal patterns with Q4 peaks
  • Insight: Holiday seasons show 20-30% revenue increases

3. ๐Ÿ‘ฅ Customer Segmentation

  • Question: How do different customer segments perform?
  • Key Finding: VIP customers have 85% higher average order value
  • Insight: Customer tier strongly correlates with spending behavior

4. ๐Ÿ“ฑ Channel Effectiveness

  • Question: Which sales channels are most effective?
  • Key Finding: Online channels lead in volume, Mobile App in value
  • Insight: Omnichannel strategy optimization opportunities identified

๐ŸŽฏ Key Business Insights

๐Ÿ’ฐ Revenue Drivers

  • Electronics category generates 60% of total revenue
  • VIP customers contribute disproportionately to high-value orders
  • Q4 seasonal boost creates 25% of annual revenue
  • Online channel drives 45% of total transactions

๐Ÿ“Š Performance Metrics

๐Ÿ“ˆ BUSINESS METRICS
โ”œโ”€โ”€ Total Revenue: $1,023,456
โ”œโ”€โ”€ Average Order Value: $511.73
โ”œโ”€โ”€ Customer Segments: 60% Regular, 30% Premium, 10% VIP
โ”œโ”€โ”€ Top Category: Electronics (59.9% revenue share)
โ”œโ”€โ”€ Peak Month: December (+32% vs average)
โ””โ”€โ”€ Best Channel: Online (45% of transactions)

๐ŸŽฏ Strategic Recommendations

๐Ÿš€ Growth Opportunities

  1. Category Focus: Increase marketing spend on Electronics and Home & Garden
  2. Customer Development: Implement loyalty programs to convert Regular โ†’ Premium โ†’ VIP
  3. Seasonal Planning: Prepare inventory and campaigns for Q4 holiday surge
  4. Channel Optimization: Enhance mobile app experience for higher conversion

๐Ÿ“ˆ Revenue Optimization

  1. Cross-selling: Bundle complementary categories (Electronics + Accessories)
  2. Geographic Expansion: Investigate underperforming regions for growth
  3. Premium Services: Develop VIP-exclusive offerings and experiences
  4. Inventory Management: Optimize stock levels based on seasonal demand patterns

๐Ÿ› ๏ธ Technical Implementation

Architecture

๐Ÿ“ Project Structure
โ”œโ”€โ”€ ๐Ÿ“Š data/                     # Data storage
โ”‚   โ”œโ”€โ”€ raw/                     # Original data sources  
โ”‚   โ””โ”€โ”€ processed/               # Cleaned datasets
โ”œโ”€โ”€ ๐Ÿ““ notebooks/                # Jupyter analysis
โ”œโ”€โ”€ ๐Ÿ”ง src/                      # Source code
โ”‚   โ”œโ”€โ”€ data_generation/         # Data creation scripts
โ”‚   โ”œโ”€โ”€ analysis/                # Analysis modules
โ”‚   โ””โ”€โ”€ visualization/           # Plotting functions  
โ”œโ”€โ”€ ๐Ÿ“ˆ outputs/                  # Generated assets
โ”‚   โ”œโ”€โ”€ figures/                 # Charts and graphs
โ”‚   โ””โ”€โ”€ reports/                 # Analysis reports
โ””โ”€โ”€ ๐Ÿงช tests/                    # Unit tests

Key Technologies

  • Pandas: Data manipulation and analysis
  • Matplotlib: Statistical plotting and visualization
  • Seaborn: Enhanced statistical graphics
  • NumPy: Numerical computations
  • Jupyter: Interactive analysis environment

Analysis Workflow

  1. Data Generation: Synthetic e-commerce dataset creation
  2. Data Exploration: Statistical summaries and quality checks
  3. Business Analysis: Multi-dimensional performance analysis
  4. Visualization: Professional charts and graphics
  5. Insights Generation: Actionable business recommendations

๐Ÿ“ File Structure

sales-data-analysis/
โ”‚
โ”œโ”€โ”€ ๐Ÿ“„ README.md                        # Project documentation
โ”œโ”€โ”€ ๐Ÿ“„ requirements.txt                 # Python dependencies  
โ”œโ”€โ”€ ๐Ÿ complete_analysis.py             # Complete analysis script
โ”‚
โ”œโ”€โ”€ ๐Ÿ“ data/
โ”‚   โ”œโ”€โ”€ raw/                            # Raw data files
โ”‚   โ””โ”€โ”€ processed/
โ”‚       โ””โ”€โ”€ ๐Ÿ“Š sales_data.csv           # Main dataset
โ”‚
โ”œโ”€โ”€ ๐Ÿ“ notebooks/
โ”‚   โ””โ”€โ”€ ๐Ÿ““ sales_data_analysis.ipynb    # Interactive analysis
โ”‚
โ”œโ”€โ”€ ๐Ÿ“ src/
โ”‚   โ””โ”€โ”€ data_generation/
โ”‚       โ””โ”€โ”€ ๐Ÿ generate_sample_data.py  # Data generator
โ”‚
โ”œโ”€โ”€ ๐Ÿ“ outputs/
โ”‚   โ””โ”€โ”€ figures/                        # Generated visualizations
โ”‚       โ”œโ”€โ”€ ๐Ÿ“ˆ category_performance.png
โ”‚       โ”œโ”€โ”€ ๐Ÿ“ˆ time_trends.png  
โ”‚       โ”œโ”€โ”€ ๐Ÿ“ˆ customer_segments.png
โ”‚       โ””โ”€โ”€ ๐Ÿ“ˆ channel_analysis.png
โ”‚
โ””โ”€โ”€ ๐Ÿ“ images/                          # README images
    โ””โ”€โ”€ ๐Ÿ“ท (visualization files)

๐ŸŽ“ Skills Demonstrated

๐Ÿ Technical Skills

  • Python Programming: Advanced data manipulation and analysis
  • Statistical Analysis: Descriptive statistics, correlation analysis
  • Data Visualization: Multi-plot layouts, custom styling, professional charts
  • Data Engineering: ETL processes, data quality validation

๐Ÿ’ผ Business Skills

  • Analytical Thinking: Structured problem-solving approach
  • Business Acumen: Revenue optimization, customer segmentation
  • Communication: Clear insights presentation and storytelling
  • Strategic Planning: Data-driven recommendations and action plans

๐Ÿ”ฎ Future Enhancements

  • Predictive Modeling: Sales forecasting with machine learning
  • Customer Analytics: Lifetime value and churn prediction
  • Real-time Dashboard: Interactive Plotly/Dash visualization
  • A/B Testing Framework: Marketing campaign optimization
  • Database Integration: PostgreSQL/MongoDB data pipeline

๐Ÿ“„ License

This project is for educational and demonstration purposes. Feel free to use and modify for learning.

๐Ÿ‘จโ€๐Ÿ’ป Contact

Created as a demonstration of data analysis and business intelligence capabilities.

๐Ÿ‘จโ€๐Ÿ’ป Author: Maria Joao Sarabando


About

๐Ÿš€ Complete e-commerce sales data analysis project demonstrating business intelligence skills with Python, Pandas, Matplotlib, and Seaborn. Includes customer segmentation, revenue analysis, and actionable business insights.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published