After the first and second part, the primary feedback I got was to rename a lot of my variables as I used the same name for different local variables which is really confusing. I tried to hotfix that, as well as adding many comments to the new parts of my code. Notice that the code contains a lot of mathematic formulas which are not easy to understand; don't blame me for that since I didn't invent these formulas. If you don't understand what a specific code part does, please make sure if that's related rather to the code than to the math before you're forcing yourself to an answer which is as helpful as "The code is bad".
# coding: utf-8
MERSENNE_EXPONENTS = [
2, 3, 5, 7, 13, 17, 19, 31, 61, 89,
107, 127, 521, 607, 1279, 2203, 2281,
3217, 4253, 4423
]
def ext_euclidean(a, b):
"""extended euclidean algorithm.
returns gcd(a, b) as well as two numbers
u and v, such that a*u + b*v = gcd(a, b)
if gcd(a, b) is 1, u is the
multiplicative inverse of a (mod b)
"""
t = u = 1
s = v = 0
while b:
a, (q, b) = b, divmod(a, b)
u, s = s, u - q*s
v, t = t, v - q*s
return a, u, v # a is now the greatest common divisor
def legendre(x, p):
"""calculates the legendre symbol.
p has to be an odd prime.
returns 1 if x is a quadratic residue (mod p)
returns -1 if x is quadratic non-residue (mod p)
returns 0 if x = 0 (mod p)
"""
return pow(x, (p-1) // 2, p)
def W(n, r, x, modulus):
"""Calculates recursive defined numbers
which are needed to calculate the modular
square root of x modulo modulus if modulus = 1 (mod 4)
"""
if n == 1:
inv = ext_euclidean(x, modulus)[1]
return (r*r*inv - 2) % modulus
if n % 2 == 0:
w0 = W((n-1) // 2, r, x, modulus)
w1 = W((n+1) // 2, r, x, modulus)
return (w0*w1 - W(1, r, x, modulus))
if n % 2 == 0:
return (W(n // 2, r, x, modulus)**2 - 2) % modulus
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
def __str__(self):
return '(' + str(self.x) + ', ' + str(self.y) + ')'
def __eq__(self, P):
if type(P) != type(self):
return False
return self.x == P.x and self.y == P.y
class EllipticCurve:
"""Provides functions for
calculations on finite elliptic
curves.
"""
def __init__(self, a, b, modulus, warning=True):
"""Constructs the curve.
a and b are parameters of the
short Weierstraß equation:
y^2 = x^3 + ax + b
modulus is the order of the finite field,
so the actual equation is
y^2 = x^3 + ax + b (mod modulus)
"""
self.a = a
self.b = b
self.modulus = modulus
if warning:
if modulus % 4 == 3 and b == 0:
raise Warning
if modulus % 6 == 5 and a == 0:
raise Warning
def mod_sqrt(self, v):
"""Calculates the modular square root
of a given value v.
"""
# check if there is a solution
l = legendre(v, self.modulus)
if l == (-1) % self.modulus:
return None # no solution
if l == 0:
return 0
if l == 1:
if self.modulus % 4 == 1:
r = 0
while legendre(r*r - 4*v, self.modulus) != (-1) % self.modulus:
r += 1
w1 = W((self.modulus-1) // 4, r, v, self.modulus)
w3 = W((self.modulus+3) // 4, r, v, self.modulus)
inv_r = ext_euclidean(r, self.modulus)[1]
inv_2 = (self.modulus + 1) // 2
return (v * (w1 + w3) * inv_2 * inv_r) % self.modulus
if self.modulus % 4 == 3:
return pow(v, (self.modulus + 1) // 4, self.modulus)
raise ValueError
raise ValueError
def generate(self, x):
"""generate Point with given x coordinate.
"""
x %= self.modulus
v = (x**3 + self.a*x + self.b) % self.modulus # the curve equation
y = self.mod_sqrt(v)
if y is None:
return None # no solution
return Point(x, y)
def add(self, P, Q):
"""point addition on this curve.
None is the neutral element.
"""
if P is None:
return Q
if Q is None:
return P
numerator = (Q.y - P.y) % self.modulus
denominator = (Q.x - P.x) % self.modulus
if denominator == 0:
if P == Q:
# doubling the point
if P.y == 0:
return None
inv = ext_euclidean(2 * P.y, self.modulus)[1]
slope = inv * (3 * P.x**2 + self.a) % self.modulus
else:
return None
else:
# normal point addition
inv = ext_euclidean(denominator, self.modulus)[1]
slope = inv * numerator % self.modulus
Rx = (slope**2 - (P.x + Q.x)) % self.modulus
Ry = (slope * (P.x - Rx) - P.y) % self.modulus
return Point(Rx, Ry)
def mul(self, P, n):
"""binary multiplication.
double and add instead of square and multiply.
"""
if P is None:
return None
if n < 0:
P = Point(P.x, self.modulus - P.y)
n = -n
R = None
for bit in bin(n)[2:]:
R = self.add(R, R)
if bit == '1':
R = self.add(R, P)
return R
class MersenneCurve(EllipticCurve):
"""Elliptic curve where the
curve order is a Mersenne prime.
"""
def __init__(self, a, b, exponent, warning=True):
if exponent not in MERSENNE_EXPONENTS:
raise ValueError
if b == 0 and warning:
raise Warning
self.a = a
self.b = b
self.exponent = exponent
self.modulus = 2**exponent - 1
I'm currently working on a class for Montgomery curves which have a different curve equation.
# doubling the point
and# normal point addition
then it is really time to introduce methods. Those are pretty useful functions for elliptic curve calculations anyway. \$\endgroup\$