You are given the following 4 by 4 grid of numbers. Create four groups of four numbers such that the numbers in each group share some common property.
This puzzle is a (hopefully harder) sequel to the original number connections puzzle.
Hint 0 (Update):
As Nis Jørgensen correctly identified, the first group consists of 144, 216, 384, and 648 - being numbers of the form $2^a3^b$.
Hint 1:
In fact, I could replace 125 with a certain number $x$, and the same solution I had in mind (swapping out 125 for $x$, of course), would work just fine.
Hint 2:
Oh, and did I mention that the value of $|125-x|$ in Hint 1 is quite small?
Hint 3:
It's not all about number theory! Mathematics is more than just number theory! It can be much more real or much more complex than that! It can exponentially ... er ... bifurcate into more advanced fields! In the end it's up to you to make the final call based on your own judgment.
