I've written the following proof:
Let $A,B$ be observables (Hermitian operators). define $ ΔA:=A-<A> $.
the uncertainty principle is: $$ ⟨(ΔA)^2⟩⟨(ΔB)^2⟩ ≥|⟨[A,B]⟩|^2/4 $$
The Heisenberg equation for $A$ gives: $$ i d/dt ⟨(ΔA)^2 ⟩=⟨[A^2,H]⟩-2⟨A⟩⟨[A,H]⟩ $$ so:
$$i d/dt⟨(ΔA)^2⟩⟨(ΔB)^2⟩ = (⟨[A^2,H]⟩-2⟨A⟩⟨[A,H]⟩)⟨(ΔB)^2⟩ + A↔B $$
define $$ C^2:=-i[A^2-2⟨A⟩A,H] , D^2:=-i[B^2-2⟨B⟩B,H] $$ which are Hermitian (are observables and have square roots).
using the uncertainty principle for $(C,B)$ and $(D,A)$, we get:
$$ d/dt ⟨(ΔA)^2 ⟩⟨(ΔB)^2 ⟩≥|⟨[C,B]⟩|^2/4+|⟨[D,A]⟩|^2/4+⟨C⟩^2⟨(ΔB)^2 ⟩+⟨(ΔA)^2 ⟩⟨D⟩^2 $$
zero is assumed if $A$ or $B$ are constants of motion. so: $$ d/dt ⟨(ΔA)^2 ⟩⟨(ΔB)^2 ⟩≥0 $$
but this is wrong (check out Does Heisenberg's uncertainty under time evolution always grow?).
I'm having trouble figuring out what's exactly wrong with my proof? does it only apply when $C,D$ are positive definite?