程序员威哥
码龄176天
求更新 关注
提问 私信
  • 博客:2,033,603
    2,033,603
    总访问量
  • 2,172
    原创
  • 710
    排名
  • 3,686
    粉丝
  • 23
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:天津市
加入CSDN时间: 2025-06-16

个人简介:Python 技术栈开发者,深耕爬虫与 AI 领域。熟练用 Python 开发高效爬虫(数据采集 / 反爬突破),精通 YOLO 系列目标检测模型(优化 / 边缘部署),熟悉 AI 项目全流程,擅长落地智能检测、数据自动化等解决方案。

博客简介:

专注于Python爬虫开发,分享爬虫技巧、项目实战与反爬经验,使用Scrapy、BeautifulSoup等工具,解决数据抓取难题。

博客描述:
专注于Python爬虫开发,分享爬虫技巧、项目实战与反爬经验,使用Scrapy、BeautifulSoup等工具,解决数据抓取难题。
查看详细资料
个人成就
  • 获得31,690次点赞
  • 内容获得76次评论
  • 获得30,165次收藏
  • 代码片获得2,082次分享
  • 原力等级
    原力等级
    6
    原力分
    2,566
    本月获得
    139
创作历程
  • 2172篇
    2025年
成就勋章
TA的专栏
  • 最新爬虫实战项目
    付费
    881篇
  • YOLO 从入门到实战:搞定目标检测与工业落地
    付费
    277篇
  • 人工智能

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 2

TA参与的活动 0

兴趣领域 设置
  • Python
    scrapybeautifulsoup
  • 编程语言
    python
  • 人工智能
    计算机视觉目标检测机器学习人工智能深度学习神经网络
创作活动更多

2025博客之星年度评选已开启

博主的年度盛宴,小米17Pro、华为平板、华为智能手表、机械键盘、还有CSDN定制周边等你来拿!!!

去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

20年老程序员亲测:YOLO+TensorRT推理加速实战(速度提3倍,附完整代码+避坑)

ONNX导出报错“Unsupported operator”开,opset选12,关闭动态维度;用GPU导出(device=0),避免CPU算子;TensorRT转引擎失败检查ONNX模型是否简化,删除冗余算子;增大workspace,或换更小的YOLO模型;推理速度没提升确认用GPU推理(别用CPU);关闭动态维度,固定batch=1;启用FP16(核心加速点);检测结果错误/漏检预处理和后处理和YOLO一致;置信度阈值别设太高(比如0.5);
原创
博文更新于 1 小时前 ·
373 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

20年老程序员转行AI:YOLO目标检测入门最佳路径(从0到1落地,避坑90%)

坑1:先啃理论再实操—— 反着来!先跑通demo,再结合实操补理论,程序员的优势是“做中学”;坑2:追新版本(v8刚会又学v9)—— 先把v8玩透,版本只是工具,核心是“落地能力”;坑3:忽视数据集—— 模型性能的80%由数据决定,别只调参不整理数据;坑4:只在本地跑,不部署—— 部署才是落地的关键,程序员的工程优势要发挥在部署上;坑5:遇到报错就慌—— 像查后端日志一样查YOLO报错,90%的问题是“路径错了、参数不匹配”;坑6:贪多求全(又学YOLO又学大模型)
原创
博文更新于 1 小时前 ·
234 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

20年老程序员手把手教你YOLOv8全流程:从安装到部署(Windows/Linux通吃,避坑版)

路径问题:Windows路径分隔符用或\\,Linux用,代码中尽量用自动适配;Linux权限问题:上传文件/保存结果时报“Permission denied”,执行赋予权限;GPU部署坑:Linux服务器需装NVIDIA Docker,否则容器内无法调用GPU;Windows打包exe:用打包时,需添加,否则运行报错;模型加载慢:跨系统均可手动下载yolov8n.pt,放到目录(Windows是C:\Users\xxx.cache\ultralytics);Linux后台运行:用nohup或。
原创
博文更新于 2 小时前 ·
453 阅读 ·
6 点赞 ·
0 评论 ·
6 收藏

20年老程序员亲测:3个YOLO练手神项目(人脸/车辆/宠物,附避坑代码)

作为一个从“YOLO小白”一路摸爬滚打的老程序员,我特别清楚新手的迷茫——总觉得要先啃完《深度学习》才能动手,其实完全反了。YOLO的优势就是“开箱即用”,这3个项目练下来,你不仅能掌握检测、追踪的核心操作,还能理解“参数调优”“场景适配”的逻辑,这些比死记理论管用10倍。如果运行代码时遇到具体报错(比如dlib安装失败、追踪ID混乱),不用慌——把报错信息+你的电脑环境(Windows/Linux、有没有GPU)贴在评论区,我会手把手帮你排查。技术入门没有捷径,但找对项目、踩对坑,就能少走很多弯路。
原创
博文更新于 2 小时前 ·
281 阅读 ·
7 点赞 ·
0 评论 ·
16 收藏

20年老程序员实测:YOLOv5/v7/v8/v9终极对比(附落地选型指南,避坑90%)

别用旧版本:v5.0和v5.11的API差异大,优先用v5.13+(最新稳定版);部署时别用默认导出:导出ONNX时加--simplify参数,减小模型体积,提升推理速度;自定义数据集别乱分:训练集/验证集比例必须8:2,否则精度会掉10%以上。新手别追v9的新,先把v8玩透,再根据场景拓展;工业落地别贪v7的精度,v8的“性价比”(精度/成本比)更高;科研别死守v7,v9是未来的趋势,但要做好踩坑的准备。我见过太多新手上来就装v9,结果连环境都配不好就放弃;
原创
博文更新于 2 小时前 ·
423 阅读 ·
6 点赞 ·
0 评论 ·
16 收藏

20年老程序员手把手教:YOLO实时视频检测全流程(摄像头调用+可视化,避坑90%)

摄像头/视频调用失败Windows路径用,Linux路径用,别混用;;检测画面卡顿换yolov8n.pt模型,降低imgsz到480;关闭多余程序,释放CPU/GPU资源;目标漏检/误检漏检多:把降到0.4;误检多:把升到0.6;保存视频黑屏/花屏确保fourcc参数是mp4v(对应mp4格式);保存的视频分辨率和原视频一致(别手动改width/height);追踪ID频繁变化开启,把升到0.5;换yolov8s.pt模型(精度更高,追踪更稳定)。新手入门:先跑通。
原创
博文更新于 2 小时前 ·
342 阅读 ·
6 点赞 ·
0 评论 ·
5 收藏

20年老程序员拆解:100行代码吃透YOLO入门(新手版,每行代码都讲透)

报错“找不到图片/视频”Windows路径用或\\(比如),别用(会被当成转义字符);优先用绝对路径,别用相对路径(比如./test.jpg换成视频卡顿/闪退把改成,降低刷新频率;换yolov8n.pt(别用yolov8s.pt),减少计算量。摄像头打不开Windows:在设置里开启摄像头权限;Linux:执行,给摄像头权限。模型加载失败手动下载yolov8n.pt,放到指定缓存目录(前面环境避坑点里有路径);检查网络,模型第一次运行会自动下载,断网会失败。
原创
博文更新于 2 小时前 ·
289 阅读 ·
8 点赞 ·
0 评论 ·
5 收藏

30分钟速通YOLO!零基础不用懂深度学习,手把手搭起第一个目标检测模型

收集100张左右的目标图片(比如100张猫的图片);,打开后画框标注“cat”);按以下目录结构存放图片和标签(必须规范):my_data/│ ├── train/ # 80张训练图│ └── val/ # 20张验证图├── train/ # 对应训练图的标签└── val/ # 对应验证图的标签新建data.yaml文件,内容如下(改路径和类别):path: ./my_data # 数据集根目录nc: 1 # 类别数量(只识别猫,所以是1)
原创
博文更新于 2 小时前 ·
235 阅读 ·
9 点赞 ·
0 评论 ·
9 收藏

20年程序员手把手带小白入门YOLO:3小时从零跑通目标检测(避坑版)

打开Python终端,复制粘贴这几行代码import cv2# 加载官方预训练模型(自动下载,不用自己找)model = YOLO('yolov8n.pt') # 'n'代表nano,轻量版,适合新手入门# 用模型检测一张图片(可以换成自己电脑里的图片路径)# 显示检测结果im_array = r.plot() # 生成带检测框的图片cv2.imshow('YOLO Detection', im_array) # 弹出窗口显示cv2.waitKey(0) # 按任意键关闭窗口。
原创
博文更新于 2 小时前 ·
369 阅读 ·
8 点赞 ·
0 评论 ·
10 收藏

20年老程序员亲测:YOLO+OpenCV 5分钟实现物体计数(附完整代码,新手秒会)

YOLO+OpenCV做物体计数,核心是“借力”——YOLO帮你搞定检测和追踪,OpenCV帮你可视化,不用自己写复杂算法。5分钟跑通只是起点,新手可以先跑通,再根据场景改:比如计数停车场的车、商场的人、工厂的零件。如果运行代码时遇到问题(比如计数不准、摄像头打不开),把“你的代码+报错信息+检测源类型(摄像头/图片/视频)”贴在评论区,我会用最简单的方式帮你排查。技术入门没有捷径,但把复杂的东西拆简单,就能少走一半弯路——祝你5分钟搞定物体计数,快速落地自己的小项目!
原创
博文更新于 2 小时前 ·
246 阅读 ·
19 点赞 ·
0 评论 ·
4 收藏

Python爬虫实战:贝壳找房二手房数据全维度抓取与成交分析(反爬突破+数据建模+可视化)

本次实战的核心不是“写爬虫脚本”,而是“构建一套贴合房产分析的贝壳找房数据抓取与分析体系”——从反爬突破保证数据获取的稳定性,到多维度分析挖掘房产的投资/居住价值,最终落地到具体的购房、投资决策。
原创
博文更新于 昨天 08:42 ·
672 阅读 ·
23 点赞 ·
0 评论 ·
12 收藏

Python爬虫实战:东方财富网股票行情数据全维度抓取与投资决策分析(反爬突破+数据建模+可视化)

本次实战的核心不是“写爬虫脚本”,而是“构建一套贴合实盘投资的股票数据抓取与分析体系”——从反爬突破保证数据获取的稳定性,到多维度分析挖掘数据的投资价值,最终落地到具体的选股、择时决策。
原创
博文更新于 昨天 08:42 ·
728 阅读 ·
13 点赞 ·
0 评论 ·
24 收藏

Python爬虫实战:漫画平台数据全维度抓取与深度解析(反爬突破+内容挖掘+可视化)

本次实战的核心不是“写爬虫脚本”,而是“构建一套可落地、有价值的漫画平台数据抓取与分析体系”——从反爬突破保证数据获取,到结构化存储保证数据完整,再到多维度分析挖掘行业价值。
原创
博文更新于 昨天 07:10 ·
353 阅读 ·
11 点赞 ·
0 评论 ·
6 收藏

Python爬虫实战:智能家居产品数据全维度抓取与深度分析(反爬绕过+数据建模+可视化)

本次实战的核心不是“写爬虫脚本”,而是“构建一套可落地、有价值的智能家居数据抓取与分析体系”——从反爬突破保证数据获取,到结构化存储保证数据完整,再到多维度分析挖掘商业价值。
原创
博文更新于 昨天 07:09 ·
421 阅读 ·
19 点赞 ·
0 评论 ·
11 收藏

Python爬虫实战:家装行业数据全维度抓取与多维度分析(反爬突破+市场洞察+可视化)

本次实战的核心不是“写爬虫脚本”,而是“构建一套可落地、有价值的家装行业数据抓取与分析体系”——从反爬突破保证数据获取,到结构化存储保证数据完整,再到多维度分析挖掘行业商业价值。
原创
博文更新于 昨天 07:09 ·
528 阅读 ·
7 点赞 ·
0 评论 ·
13 收藏

Python爬虫实战:母婴电商平台数据全维度抓取与用户评价分析(反爬突破+消费洞察+可视化)

本次实战的核心不是“写爬虫脚本”,而是“构建一套可落地、有价值的母婴电商数据抓取与分析体系”——从反爬突破保证数据获取,到结构化存储保证数据完整,再到多维度分析挖掘行业商业价值。
原创
博文更新于 昨天 07:09 ·
1011 阅读 ·
26 点赞 ·
0 评论 ·
6 收藏

Python 爬虫实战:动态地图服务数据提取(坐标解析 + POI 信息结构化技巧)

动态地图服务(如高德/百度/腾讯地图)是地理空间数据的核心载体,其POI(兴趣点)、坐标、路网等数据广泛应用于选址分析、物流规划、市场调研等场景。但地图平台采用动态渲染、接口加密、反爬校验(如签名/Token)等机制,直接抓取面临“坐标偏移、数据乱码、请求封禁”等问题。本文聚焦动态地图服务的核心爬取痛点,从三大维度,结合高德/百度地图实战案例,拆解一套可落地的动态地图数据提取方案。
原创
博文更新于 昨天 07:09 ·
776 阅读 ·
19 点赞 ·
0 评论 ·
17 收藏

Python 爬虫实战:电竞比赛直播数据实时抓取与可视化分析

WebSocket优先+HTTP轮询兜底,保证数据的低延迟和完整性;Redis缓存实时数据,适配高频读写场景;Dash/Plotly构建交互式可视化仪表盘,实现“数据→洞察”的转化;全套反爬/优化策略,保证爬虫的稳定性和可用性。通过这套方案,可快速落地电竞直播数据的实时监控与分析,支撑赛事运营、用户研究、商业化决策等核心场景。
原创
博文更新于 昨天 07:09 ·
414 阅读 ·
14 点赞 ·
0 评论 ·
7 收藏

Python爬虫实战:微信小程序内容采集的全面指南

抓包是基础,需配置好代理和证书,定位核心接口;反编译是关键,针对加密参数还原算法,或使用Hook工具实时捕获;反爬规避是保障,重点伪装请求头、控制请求频率、轮换IP/设备。
原创
博文更新于 前天 11:00 ·
545 阅读 ·
6 点赞 ·
0 评论 ·
16 收藏

实战封神!Python爬虫进阶:移动端抓包/分析/逆向全攻略(mitmproxy到高并发架构)

移动端爬虫的核心是“逆向思维+工程化落地”——先突破抓包限制,再破解加密算法,最后通过高并发架构实现稳定抓取。社交APP爬取:破解WebSocket加密,抓取实时聊天数据;爬虫集群部署:基于Docker+K8s搭建分布式爬虫集群,支撑千万级数据抓取。最后提醒:爬虫需遵守法律法规,仅爬取公开数据,不得用于商业侵权,且需尊重目标APP的robots协议和用户协议。如果你在移动端爬虫逆向、高并发架构搭建中遇到问题,欢迎在评论区交流——真正的爬虫高手,不是技术多牛,而是能在反爬限制下稳定、合规地拿到数据。
原创
博文更新于 前天 08:46 ·
631 阅读 ·
10 点赞 ·
0 评论 ·
3 收藏
加载更多