有为少年
码龄10年
求更新 关注
提问 私信
  • 博客:850,621
    社区:13,794
    问答:7,355
    动态:371
    872,141
    总访问量
  • 316
    原创
  • 4,598
    排名
  • 1,771
    粉丝
  • 145
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山西省
加入CSDN时间: 2016-04-26

个人简介:一步步,一点点

博客简介:

画心

博客描述:
有为少年不自卑
查看详细资料
个人成就
  • 获得1,539次点赞
  • 内容获得443次评论
  • 获得3,018次收藏
  • 代码片获得1,945次分享
  • 原力等级
    原力等级
    6
    原力分
    2,450
    本月获得
    19
创作历程
  • 40篇
    2025年
  • 14篇
    2024年
  • 17篇
    2023年
  • 54篇
    2022年
  • 21篇
    2021年
  • 18篇
    2020年
  • 53篇
    2019年
  • 29篇
    2018年
  • 56篇
    2017年
  • 24篇
    2016年
成就勋章
TA的专栏
  • 深度学习论文阅读
    159篇
  • 深度学习基础知识
    15篇
  • 计算摄影
    1篇
  • 数字信号处理
    4篇
  • OpenCV编程
    10篇
  • Pytorch实践
    25篇
  • Python编程
    13篇
  • 网络爬虫
    9篇
  • 计算机音乐
    13篇
  • C语言编程
    7篇
  • 汇编编程
    3篇
  • 算法设计
    7篇
  • 工具使用
    24篇
  • 文档翻译
    2篇
  • 读后感
    6篇
兴趣领域 设置
  • Python
    pythonbeautifulsoup
  • 编程语言
    pythonc++
  • 开发工具
    githubgitwindowspycharmdockervscodejupyterintellij-ideaideavisualstudiovisual studio codeintellij idea
  • 人工智能
    opencv计算机视觉目标检测机器学习人工智能深度学习神经网络cnnrnnlstmdnn生成对抗网络pytorch语言模型grutransformeropenvino超分辨率重建视觉检测图像处理nlpscikit-learn聚类集成学习迁移学习分类回归AI作画stable diffusionchatgptYOLO
  • IT工具
    wordexcelpowerpointoutlookxmind企业微信钉钉腾讯会议zoom飞书7-zipffmpegadobe acrobat readeronedriveeverything
  • 开源
    githubgit开源开源软件
创作活动更多

『AI先锋杯·14天征文挑战第9期』

在人工智能技术爆发的时代,AI工具、大模型及行业应用正深刻改变开发者的工作模式与各领域的发展格局。从智能编码助手到自动化测试平台,从大模型落地实践到垂直行业解决方案,AI正成为提升效率、驱动创新的核心引擎。 本次征文邀请开发者、行业从业者分享AI技术落地的实战经验,探讨AI工具如何优化开发流程、大模型如何重塑行业场景,以及AI在编程、测试、数据分析等领域的前沿应用。 让我们共同挖掘AI技术的无限可能,解锁效率提升与产业升级的密码!

34人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 资源
  • 最近

  • 文章

  • 专栏

  • 资源

搜索 取消

神经网络 | 从线性结构到可学习非线性

CNN、Transformer、ONN(Operational Neural Network)和KAN
原创
博文更新于 前天 17:14 ·
839 阅读 ·
14 点赞 ·
0 评论 ·
22 收藏

储层计算 (Reservoir Computing) 概述

储层计算(RC)通过固定非线性储层与可训练线性读出的解耦设计,克服了传统递归神经网络训练中的梯度问题。其核心在于利用高维动力系统将输入信号映射到线性可分空间,仅需训练输出层权重。数学证明表明,当储层权重矩阵的谱半径满足特定条件时,系统具备回声状态属性和衰退记忆特性,确保状态收敛并遗忘久远历史。RC架构从随机连接演进到结构化拓扑(如简单环、带跳跃环),并发展出深度堆叠等变体,显著提升了计算效率与性能。这一范式为时间序列建模提供了高效解决方案。
原创
博文更新于 2025.12.06 ·
613 阅读 ·
30 点赞 ·
0 评论 ·
14 收藏

告别乱码:OpenCV 中文路径(Unicode)读写的解决方案

本文针对OpenCV中文路径读取失败问题,提出了一种基于C++17标准库的跨平台解决方案。核心思路是:使用std::filesystem处理中文路径,利用std::fstream进行二进制文件读写,最后通过OpenCV的imdecode和imencode函数实现图像编解码。
原创
博文更新于 2025.11.03 ·
1135 阅读 ·
21 点赞 ·
0 评论 ·
21 收藏

生成模型 | DDPM -> Imrpoved DDPM -> DDIM

本文介绍了三种扩散模型变体:DDPM、Improved DDPM和DDIM。DDPM通过迭代去噪过程生成样本,但采样速度较慢。Improved DDPM改进了噪声调度策略,采用余弦形式的调整,并引入混合损失函数以优化训练。DDIM则通过非马尔可夫链设计,在保持相同训练目标的同时,显著加快采样速度。这三种方法在扩散模型的噪声处理、损失函数设计和采样效率上各有创新,推动了扩散模型在生成任务中的性能提升。
原创
博文更新于 2025.08.24 ·
922 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

生成模型 | 扩散模型公式推导

本文介绍了扩散模型的前向加噪和反向去噪过程。前向过程通过马尔科夫链逐步将数据$x_0$转化为高斯噪声$x_T$,其中噪声强度由预设参数$\beta_t$控制。反向过程则利用神经网络从噪声$x_T$逐步恢复原始数据$x_0$。
原创
博文更新于 2025.08.23 ·
1536 阅读 ·
19 点赞 ·
0 评论 ·
28 收藏

生成模型 | 扩散模型损失函数公式推导

本文推导了扩散模型的损失函数,通过引入前向分布简化计算,最终将损失分解为三部分:$L_T$(可忽略的常量)、$L_{t-1}$(KL散度项)和$L_0$(重构误差)。
原创
博文更新于 2025.08.23 ·
1397 阅读 ·
11 点赞 ·
0 评论 ·
26 收藏

ICCV 2025 | Reverse Convolution and Its Applications to Image Restoration

本文提出了一种新颖的深度可分离反向卷积算子(reverse convolution),通过建立并求解正则化最小二乘优化问题,实现了对depthwise卷积的有效反转。该算子采用FFT推导闭式解,并详细研究了核初始化、padding策略等实现细节。基于此构建的reverse卷积块结合了层归一化、1×1卷积和GELU激活,形成类Transformer结构,可直接替换现有网络中的常规卷积层,构建ConverseNet。
原创
博文更新于 2025.08.17 ·
2026 阅读 ·
32 点赞 ·
0 评论 ·
24 收藏

CVPR 2022 Oral | Stochastic Backpropagation A Memory Efficient Strategy

本文提出了一种视频任务训练中的内存优化策略——随机反向传播(SBP)。该方法灵感来源于视频数据的高度冗余性,通过保持完整的前向传播路径,但在每个训练步骤中随机独立地删除网络层的反向传播路径,显著减少显存占用。实验表明,SBP可降低50%显存消耗,同时保持模型性能。该方法可视为对Backdrop论文中随机反向梯度思想的扩展和实用化,特别适用于需要长期上下文信息的视频理解任务,如动作识别和时间动作定位等。
原创
博文更新于 2025.08.17 ·
522 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

TCSVT 2023 | StructToken - Rethinking Semantic Segmentation with Structural Prior

一种新的语义分割范式,通过结构化token直接构建语义掩码并逐步细化,而非传统逐像素分类方法。作者设计了三种交互结构(CSE、SSE和静态卷积)来捕获特征图中的结构信息,并通过堆叠处理单元实现mask细化。
原创
博文更新于 2025.08.17 ·
1307 阅读 ·
25 点赞 ·
0 评论 ·
18 收藏

使用 PyTorch 实现 Kronecker Product

Kronecker Product及pytorch实现文章目录Kronecker Product及pytorch实现计算过程PyTorch实现参考资料原始文档:https://www.yuque.com/lart/idh721/gb2h93计算过程[a11a12a13a21a22a23],B=[b11b12b21b22b31b32],A⊗B=[a11b11a11b12a12b11a12...
原创
博文更新于 2025.08.17 ·
4517 阅读 ·
6 点赞 ·
4 评论 ·
16 收藏

PyTorch之对类别张量进行one-hot编码

在PyTorch中如何高效的实现One-Hot编码?让本文给你一些建议。
原创
博文更新于 2025.08.17 ·
2451 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

PyTorch之BN核心参数详解

PyTorch中的BN在训练和测试时通常会对参数进行不同的设置。这之中会涉及到多个不同的参数和概念,这些组合又会如何影响BN的行为呢?
原创
博文更新于 2025.08.17 ·
3672 阅读 ·
8 点赞 ·
0 评论 ·
14 收藏

torchvision 中 deform_conv2d 操作的经验性解析

详细解析了torchvision中可变形卷积(deform_conv2d)的实现原理和使用方法。
原创
博文更新于 2025.08.17 ·
1339 阅读 ·
27 点赞 ·
0 评论 ·
25 收藏

一次由默认参数引起的思考

本文探讨了依赖版本更新导致代码输出不一致的问题。作者在迁移代码时发现,由于Pillow图像处理库从6.2.1升级到7.2.0,其默认插值策略改变导致resize()函数输出结果不同。文章分析了默认参数的利弊,指出其虽提升开发效率但存在潜在风险。作者建议采取两种应对策略:一是固定依赖版本确保稳定性;二是对关键参数进行显式配置。最后强调开发应以程序稳定运行为首要目标,盲目追求新版本可能得不偿失,并提醒开发者需谨慎对待工具依赖的版本管理。
原创
博文更新于 2025.08.17 ·
1181 阅读 ·
19 点赞 ·
0 评论 ·
11 收藏

TIP 2004 | Image quality assessment: From error visibility to structural similarity

本文介绍了全参考图像质量评估方法SSIM(结构相似性指数)的设计背景与实现。传统评估方法如MSE和PSNR虽计算简单,但与人类感知质量匹配度低。SSIM基于结构信息退化假设,通过亮度、对比度和结构三个分量评估图像质量。论文详细阐述了SSIM的算法框架,并对比了不同实现的高斯滤波处理方式差异。作者基于PyTorch实现了可微分的MSSIM代码,支持用户自定义padding和核形式参数,确保与现有实现兼容。该指标在图像处理系统优化、算法评估等领域具有重要应用价值。
原创
博文更新于 2025.08.17 ·
1447 阅读 ·
21 点赞 ·
0 评论 ·
28 收藏

小波变换 | 离散小波变换

介绍了离散小波变换(DWT)的核心原理与实现方法。重点阐述了从连续小波变换到DWT的离散化过程,包括尺度参数和平移参数的二进网格采样(a_j=2^j, b_jk=k·2^j),以及时间参数的离散化处理。通过多分辨率分析(MRA)理论,系统性地构建了正交或双正交的小波基函数,引入尺度函数和小波函数两套基函数体系。
原创
博文更新于 2025.08.02 ·
1453 阅读 ·
7 点赞 ·
0 评论 ·
6 收藏

ACMMM 2024 | Wave-Mamba: Wavelet State Space Model for Ultra-High-Definition Low-Light Image Enhance

针对超高清低照度图像增强中的计算复杂度和信息丢失问题,提出Wave-Mamba模型。该模型创新性地结合离散小波变换(DWT)与状态空间模型(SSM),通过小波域分析发现:1)93.7%图像能量集中于低频分量;2)高频对增强结果影响微弱。基于此,设计低频状态空间模块(LFSSBlock)进行全局增强,并通过改进的高频增强模块(HFEBlock)校正细节。
原创
博文更新于 2025.08.01 ·
1583 阅读 ·
36 点赞 ·
0 评论 ·
12 收藏

ICCV 2025 | WaveMamba: Wavelet-Driven Mamba Fusion for RGB-Infrared Object Detection

本文提出WaveMamba,一种基于小波变换和Mamba的RGB-红外跨模态目标检测方法。研究发现RGB和红外图像在频域具有互补特性:红外图像低频信息丰富,RGB图像高频细节突出。WaveMamba通过离散小波变换分解特征,采用低频Mamba融合块(结合通道交换和门控注意力)和高频绝对最大值增强策略,实现高效特征融合。在六个基准数据集上的实验表明,该方法平均mAP提升4.5%,同时保持较低计算开销,为跨模态目标检测提供了新思路。
原创
博文更新于 2025.08.01 ·
1786 阅读 ·
21 点赞 ·
5 评论 ·
16 收藏

ICCV 2025 | CWNet: Causal Wavelet Network for Low-Light Image Enhancement

本文提出一种基于因果推理与小波变换的低光照图像增强方法。CWNet通过因果干预分析揭示潜在因果关系,采用全局度量学习分离因果/非因果因子,并引入实例级CLIP语义损失确保局部一致性。同时设计基于小波变换的主干网络优化频域信息恢复。实验表明,CWNet在多个数据集上优于现有方法,有效解决了光照不均与语义保持的挑战。该方法为低光增强提供了新的因果推理视角,显著提升了视觉质量与语义准确性。
原创
博文更新于 2025.07.24 ·
1603 阅读 ·
18 点赞 ·
0 评论 ·
33 收藏

PyTorch之Checkpoint机制解析

PyTorch 提供了一种非常方便的节省显存的方式,就是 Checkpoint 机制。这篇文章的目的在于更透彻的了解其内在机制。
原创
博文更新于 2025.07.23 ·
10623 阅读 ·
8 点赞 ·
2 评论 ·
28 收藏
加载更多